If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2+8x=148
We move all terms to the left:
20x^2+8x-(148)=0
a = 20; b = 8; c = -148;
Δ = b2-4ac
Δ = 82-4·20·(-148)
Δ = 11904
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{11904}=\sqrt{64*186}=\sqrt{64}*\sqrt{186}=8\sqrt{186}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8\sqrt{186}}{2*20}=\frac{-8-8\sqrt{186}}{40} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8\sqrt{186}}{2*20}=\frac{-8+8\sqrt{186}}{40} $
| 4x(5x+2)=148 | | 7x+11=3(x+4)* | | -5(-2+2x)=131/2 | | -1.5(x-2)=3 | | -(-20-30)-x^2=1 | | F(8)=-3n+5 | | 6l=32 | | -5m+16=19 | | 10+y+30/2=2y | | 0.75r-3.25=-49/16 | | 13x+17x=29 | | 4x+9=129 | | 4x+9+129=180 | | 1.5x+1.25=13/2 | | -11=-1.5+x | | 1.5x+1.25=6.5 | | 1(2e-1)-3=6+6e | | (10+y+30)/2=2y | | 9/5=6/x+1 | | 130+(-10+5x)=180 | | (n+8)/(5n-)=3/8 | | 3/2x+5/4=13/2 | | 167/5=15/x | | 2x²-10x=0 | | 4/x=6/x-2 | | 3x+3x=-12 | | 4(×-2)+2x=40 | | (4+v)(2v+7)=0 | | 2(x-4)+6x=4(2x-6) | | 9x–5=58 | | -3=3+3k+3k | | 76+2y+30=180 |